Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wordpress-seo domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /chroot/home/smartdes/smartdesks.com/html/knowledge-center/wp-includes/functions.php on line 6114
New Jersey Institute of TechnologyMakerspace Gets a SMARTdesksMakeover - Smartdesks Knowledge Center
Need Help? Click here Learn more or call 1 (800) 770-7042 Fax: 1 (410) 697-1614

New Jersey Institute of TechnologyMakerspace Gets a SMARTdesksMakeover

New Jersey Institute of Technology Makerspace Gets a SMARTdesks Makeover

Walk into the Makerspace at New Jersey Institute of Technology (NJIT) and you will see Computer Numerical Control machinery, waterjet cutters, high-tech 3D printers for metal and plastic, and whiteboards full of ideas, to-do lists, and calculations. While the spacious downstairs is filled with machinery for students to bring theory into practice, the brand new, multi-purpose classroom upstairs is where much of the teaching and learning will prime students for success.

SMARTdesks completed a makeover of the Dieter Weissenrieder Industrial and Manufacturing Engineering Lab in time for the 2021-2022 school year, when incoming students will take on a new set of mechanical, electrical, and industrial engineering challenges. Daniel Brateris, Director of Experiential Learning at NJIT, explained how he decided to work with SMARTdesks and the role the new classroom will have in the engineering curricula. Undergraduate students at NJIT in mechanical, manufacturing, and industrial engineering tracks benefit from instructional modes that blend lecture-based STEM classes with hands-on experience using engineering and programming software. Brateris said, “In the renovated lab, we wanted to have the computers and then put them away. For a lot of our lecturing, we don’t want people to have a computer because we want to be sure their attention is on us. When I teach, I don’t like having tests, but sometimes it’s the only way to verify that people are actually learning and at the same time, you can’t put everything on the test. So, you have to make sure your audience – your students – are paying attention. That’s one of the hardest things to do in a classroom, especially if you have a class that requires computers. You can walk around at the same time you’re lecturing, and people have YouTube up; the list of distractions goes on and on.”

Brateris approached SMARTdesks to help solve the technology distraction problem while keeping the engineering lab flexible enough to accommodate both lecture-based and computer-based courses. In response,SMARTdesks designed a 24-seat lab with flipIT® motorless monitor lift computer desks that literally rise to the challenge of providing technology to students when necessary and removing it when screen-time detracts from learning.When students need their computers, they push down on the lid at the front edge of the desk, and the LCD display pneumatically rises from beneath the desktop surface. As Brateris said,“What we liked about SMARTdeskswas the ability to switch between computer use and a technology-free classroom. There are a lot of lecture-based classes in this room, and there are other classes in here where we will use the computers. We wanted the room available for classes that did not require computers. If the screen is in the down position, now you have a regular classroom.” SMARTdesksflipIT® motorless monitor lift mechanism also enables the NJIT to switch out their Lenovo ThinkStation CPUs when they need an upgrade, and maple laminate tops tie together the new classroom with existing interior design elements in NJIT’s Makerspace.
The NJIT/SMARTdesks collaboration successfully combined CNC equipment and computer software resources to teach students how to use the machinery in the same space.To that end,a unique feature of the renovated Weissenrieder lab is its HAAS Vertical CNC machine at the rear of the classroom.NJIT instructors teach students how to use specialized software that is too expensive to install on the students’ personal laptops, so it is licensed to university computers instead. Several courses at NJIT rely on Kalypso, an inspection software that has capability to measurewithin 3 microns of accuracy, or up to 1/10,000th of an inch. Using the software skills gained in class, the goal is for students to emulate real-world processes in the engineering lab, from conceptualization and design, to build, and finally quality control and inspection of the final manufactured parts.
Whenstudents graduate, they are equipped with engineering skills that develop their leadership potential inmechanical, industrial, and manufacturing engineering fields. Brateris said, “One of the things that affects our competitiveness with the rest of the world is our ability to do things in an automated way. The concept is to teach our students many parts of the automation process. First, design the best workflow and process possible. Then, the parts need to be made as efficiently as possible. Determine the critical features of the part and which features need to be precision machined. Learning how all those elements tie together is very important.” To accomplish this goal,NJIT curricula is focused on core concepts of how tocreate one part, replicate, and scale that process to create 10,000identical parts in an automated way.Brateris explained thatcapable engineers know how to program CNC machines with an algorithm that instructs the machines to correct trends in very small differences in parts from factors such as wear on the tool. As that happens, the inspection machine will dynamically tell the milling machine to remeasure and adjust the cutting path to compensate for small deviations. He said, “For us, it is important that our students have mastery of a logical ability to solve a problem.If the engineer has specific knowledge as to what could be causing the problem, this gives enough knowledge to address the problem and work towards a resolution.”
Future goals for the renovated engineering lab include not only applied learning for NJIT students, but also professional training for the local community of industry in the New York metropolitan area. Local to NJIT, there are a significant number of capable machinists who lack computer machining knowledge. Many engineers who are still working manuallywant to learn more automated machining techniques, and Brateris plansto further build out professional development curricula. As the director of experiential learning, he oversees any education projects that go beyond a textbook. It is his goal that with the addition of robotics courses for automation, welding, visual inspection, sanding, and polishing, both NJIT students and local professionals will learn how to optimize industrial output in the renovated engineering lab.
Part of the NJIT mission is not only to develop capable engineers, but also imbue them with a sense of responsibility. During the most stringent lockdown period of COVID-19, the Makerspace was far from quiet. As soon as contractors were allowed on-site, renovations to the upstairs classroom began, as well as a massive project that built and delivered 25,000 injection-molded face shields to local healthcare facilities. Brateris explained that many people at home also used their 3D printers to output PPE in the form of face shields. However, the unsuspecting good Samaritans were not aware that tiny voids in the 3D plastic prevented cleaning agents from sufficiently disinfecting the surface; therefore, hospitals could only use the PPE once before throwing it away. Although 3D printing has developed into a promising tool, Brateris warned against overstating its capabilities before the technology matures to its full potential. In his words, “Once [3D printing] designs were posted online, the making community bought up nearly all the thin plastic on the market, making the wasteful shields, and it was hard for us to procure plastic that could be reused for up to three months. This is why we try to educate very responsible engineers. Even people with a good mindset can cause very unknown consequences.”

Before:

njit classroom before makeover

After:

Motorless Monitor Lift Desks

motorless monitor lift desk

Looking to give your classroom a lift? Check out the Motorless Monitor Lift Desks from SMARTdesks. Ideal for classrooms, computer labs, and multi-use spaces when you need technology one moment, and not the next. Available in custom finishes to suit your organization. 

Motorless Monitor Lift Mechanism

Monitor Lift Mechanism for Computer Desk

Have the desk already, but want the monitor lift? No problem! The SMARTdesks Motorless Monitor Lift is available as a retrofit kit for existing desktops. Check it out.